Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2783: 287-300, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478241

RESUMO

Adipose tissue is a complex and multifaceted endocrine organ located throughout the body. The dysfunction of adipose tissue is known to induce a wide variety of comorbidities that can negatively impact one's health and quality of life. In addition to behavioral changes, drugs that target dysfunctional adipose tissue to treat associated diseases are clinically needed. Regarding drug-testing platforms, animal models are the most popular models, limited by known differences from humans in genetics and physiology. Two-dimensional and static three-dimensional (3D) cell cultures are also used. Still, these in vitro models with static culture fail to recapitulate the phenotype and function of adipocytes seen in vivo. To combat this, our lab has developed an adipose tissue microphysiological system. A perfusion bioreactor with dual-flow chambers is 3D printed, which enables individualized top and bottom medium flows after adipose tissues are inserted as a barrier. Human progenitor cells, such as human mesenchymal stem cells, are embedded within a gelatin scaffold and in situ adipogenic differentiation within the bioreactor. Medium flow is established via a syringe pump system, allowing in vivo-like conditions to be maintained. The novel bioreactor-cultured adipose tissues represent a versatile disease modeling and drug-testing system. Here, we present the step-by-step methods to generate the bioreactors and adipose tissues. We also show the process of collecting and analyzing samples. In addition, we highlight the critical steps that require particular attention in notes.


Assuntos
Células-Tronco Mesenquimais , Qualidade de Vida , Animais , Humanos , Tecido Adiposo , Técnicas de Cultura de Células/métodos , Tecidos Suporte , Diferenciação Celular , Reatores Biológicos , Engenharia Tecidual , Células Cultivadas
2.
J Vis Exp ; (191)2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36779602

RESUMO

The high prevalence of debilitating joint diseases like osteoarthritis (OA) poses a high socioeconomic burden. Currently, the available drugs that target joint disorders are mostly palliative. The unmet need for effective disease-modifying OA drugs (DMOADs) has been primarily caused by the absence of appropriate models for studying the disease mechanisms and testing potential DMOADs. Herein, we describe the establishment of a miniature synovial joint-mimicking microphysiological system (miniJoint) comprising adipose, fibrous, and osteochondral tissue components derived from human mesenchymal stem cells (MSCs). To obtain the three-dimensional (3D) microtissues, MSCs were encapsulated in photocrosslinkable methacrylated gelatin before or following differentiation. The cell-laden tissue constructs were then integrated into a 3D-printed bioreactor, forming the miniJoint. Separate flows of osteogenic, fibrogenic, and adipogenic media were introduced to maintain the respective tissue phenotypes. A commonly shared stream was perfused through the cartilage, synovial, and adipose tissues to enable tissue crosstalk. This flow pattern allows the induction of perturbations in one or more of the tissue components for mechanistic studies. Furthermore, potential DMOADs can be tested via either "systemic administration" through all the medium streams or "intraarticular administration" by adding the drugs to only the shared "synovial fluid"-simulating flow. Thus, the miniJoint can serve as a versatile in vitro platform for efficiently studying disease mechanisms and testing drugs in personalized medicine.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Cartilagem Articular/fisiologia , Articulação do Joelho , Líquido Sinovial , Dispositivos Lab-On-A-Chip
3.
Gels ; 8(12)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36547318

RESUMO

Previously, we used a gelatin/hyaluronic acid (GH)-based scaffold to induce chondrogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hBMSC). The results showed that hBMSCs underwent robust chondrogenesis and facilitated in vivo cartilage regeneration. However, it was noticed that the GH scaffolds display a compressive modulus that is markedly lower than native cartilage. In this study, we aimed to enhance the mechanical strength of GH scaffolds without significantly impairing their chondrosupportive property. Specifically, polyethylene glycol diacrylate (PEGDA) and photoinitiators were infiltrated into pre-formed hBMSC-laden GH scaffolds and then photo-crosslinked. Results showed that infiltration of PEG at the beginning of chondrogenesis significantly increased the deposition of glycosaminoglycans (GAGs) in the central area of the scaffold. To explore the mechanism, we compared the cell migration and proliferation in the margin and central areas of GH and PEG-infiltrated GH scaffolds (GH+PEG). Limited cell migration was noticed in both groups, but more proliferating cells were observed in GH than in GH+PEG. Lastly, the in vitro repairing study with bovine cartilage explants showed that PEG- impregnated scaffolds integrated well with host tissues. These results indicate that PEG-GH hybrid scaffolds, created through infiltrating PEG into pre-formed GH scaffolds, display good integration capacity and represent a new tool for the repair of chondral injury.

4.
Clin Transl Med ; 12(12): e1112, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36536500

RESUMO

BACKGROUND: Human multipotent progenitor cells (hiMPCs) created from induced pluripotent stem cells (iPSCs) represent a new cell source for cartilage regeneration. In most studies, bone morphogenetic proteins (BMPs) are needed to enhance transforming growth factor-ß (TGFß)-induced hiMPC chondrogenesis. In contrast, TGFß alone is sufficient to result in robust chondrogenesis of human primary mesenchymal stromal cells (hMSCs). Currently, the mechanism underlying this difference between hiMPCs and hMSCs has not been fully understood. METHODS: In this study, we first tested different growth factors alone or in combination in stimulating hiMPC chondrogenesis, with a special focus on chondrocytic hypertrophy. The reparative capacity of hiMPCs-derived cartilage was assessed in an osteochondral defect model created in rats. hMSCs isolated from bone marrow were included in all studies as the control. Lastly, a mechanistic study was conducted to understand why hiMPCs and hMSCs behave differently in responding to TGFß. RESULTS: Chondrogenic medium supplemented with TGFß3 and BMP6 led to robust in vitro cartilage formation from hiMPCs with minimal hypertrophy. Cartilage tissue generated from this new method was resistant to osteogenic transition upon subcutaneous implantation and resulted in a hyaline cartilage-like regeneration in osteochondral defects in rats. Interestingly, TGFß3 induced phosphorylation of both Smad2/3 and Smad1/5 in hMSCs, but only activated Smad2/3 in hiMPCs. Supplementing BMP6 activated Smad1/5 and significantly enhanced TGFß's compacity in inducing hiMPC chondrogenesis. The chondro-promoting function of BMP6 was abolished by the treatment of a BMP pathway inhibitor. CONCLUSIONS: This study describes a robust method to generate chondrocytes from hiMPCs with low hypertrophy for hyaline cartilage repair, as well as elucidates the difference between hMSCs and hiMPCs in response to TGFß. Our results also indicated the importance of activating both Smad2/3 and Smad1/5 in the initiation of chondrogenesis.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Humanos , Ratos , Animais , Condrogênese/fisiologia , Células-Tronco Mesenquimais/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Hipertrofia/metabolismo
5.
Adv Sci (Weinh) ; 9(21): e2105909, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35436042

RESUMO

Diseases of the knee joint such as osteoarthritis (OA) affect all joint elements. An in vitro human cell-derived microphysiological system capable of simulating intraarticular tissue crosstalk is desirable for studying etiologies/pathogenesis of joint diseases and testing potential therapeutics. Herein, a human mesenchymal stem cell-derived miniature joint system (miniJoint) is generated, in which engineered osteochondral complex, synovial-like fibrous tissue, and adipose tissue are integrated into a microfluidics-enabled bioreactor. This novel design facilitates different tissues communicating while still maintaining their respective phenotypes. The miniJoint exhibits physiologically relevant changes when exposed to interleukin-1ß mediated inflammation, which are similar to observations in joint diseases in humans. The potential of the miniJoint in predicting in vivo efficacy of drug treatment is confirmed by testing the "therapeutic effect" of the nonsteroidal anti-inflammatory drug, naproxen, as well as four other potential disease-modifying OA drugs. The data demonstrate that the miniJoint recapitulates complex tissue interactions, thus providing a robust organ chip model for the study of joint pathology and the development of novel therapeutic interventions.


Assuntos
Células-Tronco Mesenquimais , Osteoartrite , Tecido Adiposo/patologia , Humanos , Articulação do Joelho/patologia , Osteoartrite/tratamento farmacológico
6.
Sci China Life Sci ; 65(2): 309-327, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34109475

RESUMO

Significant cellular senescence has been observed in cartilage harvested from patients with osteoarthritis (OA). In this study, we aim to develop a senescence-relevant OA-like cartilage model for developing disease-modifying OA drugs (DMOADs). Specifically, human bone marrow-derived mesenchymal stromal cells (MSCs) were expanded in vitro up to passage 10 (P10-MSCs). Following their senescent phenotype formation, P10-MSCs were subjected to pellet culture in chondrogenic medium. Results from qRT-PCR, histology, and immunostaining indicated that cartilage generated from P10-MSCs displayed both senescent and OA-like phenotypes without using other OA-inducing agents, when compared to that from normal passage 4 (P4)-MSCs. Interestingly, the same gene expression differences observed between P4-MSCs and P10-MSC-derived cartilage tissues were also observed between the preserved and damaged OA cartilage regions taken from human samples, as demonstrated by RNA Sequencing data and other analysis methods. Lastly, the utility of this senescence-initiated OA-like cartilage model in drug development was assessed by testing several potential DMOADs and senolytics. The results suggest that pre-existing cellular senescence can induce the generation of OA-like changes in cartilage. The P4- and P10-MSCs derived cartilage models also represent a novel platform for predicting the efficacy and toxicity of potential DMOADs on both preserved and damaged cartilage in humans.


Assuntos
Antirreumáticos/farmacologia , Cartilagem/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Modelos Biológicos , Osteoartrite/tratamento farmacológico , Antirreumáticos/uso terapêutico , Cartilagem/metabolismo , Cartilagem/patologia , Diferenciação Celular , Células Cultivadas , Senescência Celular/genética , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/patologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Senoterapia/farmacologia , Engenharia Tecidual , Transcriptoma
7.
Front Bioeng Biotechnol ; 9: 677576, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996787

RESUMO

Autologous chondrocyte implantation (ACI) is a procedure used to treat articular cartilage injuries and prevent the onset of post-traumatic osteoarthritis. In vitro expansion of chondrocytes, a necessary step in ACI, results in the generation of senescent cells that adversely affect the quality and quantity of newly formed cartilage. Recently, a senolytic peptide, fork head box O transcription factor 4-D-Retro-Inverso (FOXO4-DRI), was reported to selectively kill the senescent fibroblasts. In this study, we hypothesized that FOXO4-DRI treatment could remove the senescent cells in the expanded chondrocytes, thus enhancing their potential in generating high-quality cartilage. To simulate the in vitro expansion for ACI, chondrocytes isolated from healthy donors were expanded to population doubling level (PDL) 9, representing chondrocytes ready for implantation. Cells at PDL3 were also used to serve as the minimally expanded control. Results showed that the treatment of FOXO4-DRI removed more than half of the cells in PDL9 but did not significantly affect the cell number of PDL3 chondrocytes. Compared to the untreated control, the senescence level in FOXO4-DRI treated PDL9 chondrocytes was significantly reduced. Based on the result from standard pellet culture, FOXO4-DRI pre-treatment did not enhance the chondrogenic potential of PDL9 chondrocytes. However, the cartilage tissue generated from FOXO4-DRI pretreated PDL9 cells displayed lower expression of senescence-relevant secretory factors than that from the untreated control group. Taken together, FOXO4-DRI is able to remove the senescent cells in PDL9 chondrocytes, but its utility in promoting cartilage formation from the in vitro expanded chondrocytes needs further investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...